Competitive sorption of Ni and Zn at the aluminum oxide/water interface: an XAFS study
نویسندگان
چکیده
Trace metals (e.g. Ni, Zn) leached from industrial and agricultural processes are often simultaneously present in contaminated soils and sediments. Their mobility, bioavailability, and ecotoxicity are affected by sorption and cosorption at mineral/solution interfaces. Cosorption of trace metals has been investigated at the macroscopic level, but there is not a clear understanding of the molecular-scale cosorption processes due to lack of spectroscopic information. In this study, Ni and Zn cosorption to aluminum oxides (γ-Al2O3) in binary-sorbate systems were compared to their sorption in single-sorbate systems as a function of pH using both macroscopic batch experiments and synchrotron-based X-ray absorption fine structure spectroscopy. At pH 6.0, Ni and Zn were sorbed as inner-sphere surface complexes and competed for the limited number of reactive sites on γ-Al2O3. In binary-sorbate systems, Ni had no effect on Zn sorption, owning to its lower affinity for the metal oxide surface. In contrast, Zn had a higher affinity for the metal oxide surface and reduced Ni sorption. At pH 7.5, Ni and Zn were sorbed as mixed-metal surface precipitates, including Ni-Al layered double hydroxides (LDHs), Zn-Al LDHs, and likely Ni-Zn-Al layered triple/ternary hydroxides. Additionally, at pH 7.5, Ni and Zn do not exhibit competitive sorption effects in the binary system. Taken together, these results indicated that pH critically influenced the reaction products, and provides a crucial scientific basis to understand the potential mobility, bioavailability, and ecotoxicity of Ni and Zn in natural and contaminated geochemical environments.
منابع مشابه
The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: A time-resolved XAFS study
In this study kinetic investigations were combined with X-ray Absorption Fine Structure (XAFS) measurements to determine Ni sorption processes on pyrophyllite, gibbsite, and montmorillonite over extended time periods (min-months). The kinetic investigations revealed that Ni sorption reactions (pH 5 7.5, [Ni]initial 5 3 mM, I 5 0.1 M (NaNO3)) were initially fast (8–35% of the initial Ni was remo...
متن کاملKinetics and Mechanisms of Pb(II) Sorption and Desorption at the Aluminum Oxide-Water Interface
The fate of Pb in the environment is highly dependent on sorption and desorption reactions on solid surfaces. In this study Pb sorption and desorption kinetics on γ-Al2O3 at pH 6.50, I ) 0.1 M, and [Pb]initial ) 2 mM were investigated using both macroscopic and spectroscopic measurements. X-ray absorption fine structure (XAFS) spectroscopy revealed a Pb-Al bond distance of 3.40 Å, consistent wi...
متن کاملSpectroscopic Evidence for the Formation of Mixed-Cation Hydroxide Phases upon Metal Sorption on Clays and Aluminum Oxides
Retention of heavy metal ions on soil mineral surfaces is an important process for maintaining environmental quality. A thorough understanding of the kinetics and mechanisms of heavy metal sorption on soil mineral surfaces is therefore of fundamental importance. The present study examines the kinetics and mechanisms of Ni(II) sorption onto pyrophyllite, kaolinite, gibbsite, and montmorillonite....
متن کاملKinetics of Mixed Ni-Al Precipitate Formation on a Soil Clay Fraction
The kinetics of mixed Ni-Al layered double hydroxide (LDH) precipitate formation on a soil clay fraction was monitored using X-ray absorption fine structure (XAFS) spectroscopy. The kinetic behavior was monitored at pH 6.0, 6.8, and 7.5 in order to determine the effect of reaction pH on precipitate formation. XAFS analyses were performed on a Ni-reacted whole soil at pH 7.5 to determine the eff...
متن کاملGrazing-Incidence XAFS Study of Aqueous Zn(II) Sorptionon a-Al2O3 Single Crystals
Grazing-Incidence XAFS Study of Aqueous Zn(II) Sorption on α-Al2O3 Single Crystals Thomas P. Trainor,∗,1,2 Jeffrey P. Fitts,† Alexis S. Templeton,∗ Daniel Grolimund,‡ and Gordon E. Brown, Jr.∗,§ ∗Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305; †Environmental Molecular Sciences Institute, Columbia University, New York, New York 10027; ‡Swiss ...
متن کامل